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Measures of Variability



Learning Objectives

1. Understand and interpret the range, variance (and standard
deviation), and percentiles

2. Understand and interpret boxplots
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Variability

When some data are more spread out
than others, we say that they have

higher variability.
There is less concentration around the

measures of location.



Measures of Variability

▶ The simplest measure of variability is the range, given by

range = xmax − xmin.

▶ The sample variance is given by squared deviations from the
mean.

s2 = 1
n

n∑
i=1

(xi − x)2.

▶ Note, the formula you will often see will be slightly different. Ignore this
for now!

▶ The square root of the sample variance is called the standard
deviation, s =

√
s2.
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Properties of the Variance and Standard Deviation
▶ We have both s2 ≥ 0 and s ≥ 0, with equality only in constant

data.

▶ The standard deviation makes most sense to discuss in
conjunction with the mean.

▶ We define Sxx = ∑n
i=1(xi − x)2, so that s2 = Sxx

n .
▶ We have that Sxx = ∑n

i=1 x 2
i − nx 2.

▶ Adding constants to all of the data will not change the variance.
▶ Multiplying all of the data by a constant, c , multiplies the

variance by c2

▶ The standard deviation will be multiplied by |c|.
▶ This can be useful for unit conversions.
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Generalizing from the Median

▶ Recall that the median divides the data so that 50% is above it
and 50% is below it.

▶ What if we swapped from 50% to p% (below, and (100 − p)%
above)?

▶ This quantity is called the p-th percentile.
▶ The median is the 50-th percentile.

▶ We call the 25th percentile Q1, and the 75th percentile Q3.

▶ This stands for quartile 1 and 3.
▶ These can be computed as the median of the lower and upper half of

the data.
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Interquartile Range and Five Number Summary

▶ The interquartile range, or IQR, is calculated as
IQR = Q3 − Q1.

▶ IQR is a measure of spread, related to the median.

▶ Useful for detecting outliers.

▶ Data which are 1.5 × IQR away from the nearest quartile are mild
outliers; more than 3 times are extreme outliers.

▶ If we list min, Q1, median, Q3, max for data, this is the five
number summary.

▶ We can display the five number summary using a box plot
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Summary
▶ Location does not capture all the nuance of a particular

distribution.
▶ It is important to consider the spread, or variability as well.
▶ The range, standard deviation, and variance are all common

methods for measuring variability.
▶ Medians can be generalized to arbitrary values, called

percentiles.
▶ Percentiles are used to form the IQR and the five number

summary.
▶ The five number summary can be graphically represented

through box plots.
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